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Evolution equations are derived for weakly nonlinear, multi-frequency and directional
surface gravity waves propagating from deep to shallow water over weakly two-
dimensional bottom topography. A uniform transition from cubic resonances in deep–
intermediate water (Stokes regime) to quadratic near resonances in shallow water
(Boussinesq regime) is obtained by extending the ordered solution to include
additional higher-order terms for the bound wave components. The model assumes a
leading-order, alongshore-uniform bottom with a two-dimensional depth perturbation
that is incorporated through a Taylor series expansion of the bottom boundary
condition. Numerical implementations of the model and comparisons to experimental
data are presented that demonstrate the model’s ability to describe: (i) cubic wave–
wave interactions in deep–intermediate water depth; (ii) harmonic generation over a
one-dimensional submerged obstacle; (iii) harmonic generation over two-dimensional
topography.

1. Introduction
As ocean waves advance from deep water into shallow coastal areas and onto

beaches they transform owing primarily to refraction and nonlinear wave interactions,
the latter dominated by near-resonant quadratic interactions involving triplets of
waves. Sum interactions transform near-symmetrical waves to the charac-
teristic skewed, pitched-forward shapes of waves observed on beaches (e.g. Elgar &
Guza 1985) and cause the formation of multi-crest wave trains behind submerged
obstacles (e.g. Johnson, Fuchs & Morison 1951; Byrne 1969). Difference inter-
actions induce radiation of long-wave motion in the nearshore region, generally
referred to by the collective name ‘surf beat’, coined by its pioneering observer
Munk (1949). These effects are recognized as major factors in the study of nearshore
morphological evolution (e.g. Roelvink & Stive 1989; Hoefel & Elgar 2003) and are
of paramount importance in the design of coastal structures and harbours.

In deep–intermediate water, frequency dispersion precludes resonances in the
quadratic interactions (the lowest order nonlinear interactions); instead, the nonlinear
wave field evolution is dominated by cubic or quartet interactions (e.g. Phillips
1977, § 3.8). These interactions are an order higher in the nonlinearity parameter
ε � 1 than quadratic interactions, and thus affect wave evolution over distances that
are O(ε−1) longer. The Zakharov equation (Zakharov 1968) and the deterministic
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expressions in Hasselmann (1962) constitute evolution equations incorporating the
effects of cubic interactions without limitations on spectral width. Stiassnie & Shemer
(1984) re-derived Zakharov’s work for finite depth and Herterich & Hasselmann
(1980) corrected a typographical error affecting the finite depth expressions in
Hasselmann (1962). The celebrated cubic Schrödinger equation (CSE) (e.g. Zakharov
1968; Hasimoto & Ono 1972; Yuen & Lake 1975) and the Dysthe equation (Dysthe
1979) are special cases of these general formulations when a perturbation in spectral
width is applied. Depth variability was incorporated in the derivations of e.g. Chu &
Mei (1970), Djordjević & Redekopp (1978) and Liu & Dingemans (1989), but apart
from the one-dimensional simulations in Dingemans et al. (1991), few numerical
implementations have been reported. Suh, Dalrymple & Kirby (1990) derived an
angular spectrum model for Stokes waves over weakly two-dimensional topography
and compared model simulations to laboratory observations. Invariably these models,
with cubic nonlinearities as the dominant nonlinear physics, incorporate quadratic
interactions as bound second-order corrections to the primary waves, rendering them
incompatible with shallow water where quadratic interactions approach resonance
(e.g. Bryant 1974).

Following Armstrong et al. (1962) and Bretherton (1964), evolution equations based
on Boussinesq theory were developed to describe the effects of quadratic near-
resonances in uniform depth (e.g. Mei & Ünlüata 1972; Bryant 1973), over undulating
topography (Lau & Barcilon 1972) and over arbitrary but mildly varying depth
(Freilich & Guza 1984). Keller (1988) showed that similar equations are in fact deriv-
able from fully dispersive theory. Many models have emerged since then, either based
on Boussinesq theory (e.g. Madsen & Sørensen 1993; Herbers & Burton 1997) or fully
dispersive theory, suitable for unidirectional waves over one-dimensional topography
(e.g. Agnon et al. 1993), small-angle models for two-dimensional topography (e.g.
Kaihatu & Kirby 1995; Tang & Ouellet 1997) and models for multi-directional wave
propagation over alongshore-uniform topography (e.g. Sheremet 1996; Eldeberky &
Madsen 1999). In general, the models based on fully dispersive theory include full
dispersion in the linear terms and the nonlinear interaction coefficient but retain
the premise of near-resonance. The latter restriction was removed by Bredmose
et al. (2002) who apply suitable boundary conditions on a general solution to the
Laplace equation in the form of infinite expansions of trigonometric functions (see
also Madsen & Schäffer 1998; Rayleigh 1876) for unidirectional waves over one-
dimensional topography. These models include quadratic near-resonances as the
dominant nonlinear physics but invariably lack the ability to model cubic near
resonances in deep–intermediate depth, which implicitly restricts them to relatively
shallow water where the assumption of dominant quadratic interactions is warranted.

The aim of the present work is to derive generalized evolution equations suitable for
surface wave propagation over two-dimensional topography including the transition
from cubic wave–wave interactions in deep–intermediate water (Stokes regime) to
quadratic interactions in shallow water (Boussinesq regime) in a consistent and
unified manner. Our derivation is along the lines of Chu & Mei (1970), generalized
to a multi-frequency and multi-directional wave field utilizing an angular spectrum
decomposition of the wave field (e.g. Dalrymple et al. 1989), and extended to higher
order in the bound wave components to support the transition to shallow water. The
effects of topographical features on the wave propagation are included through a
scattering mechanism (e.g. Suh et al. 1990). The resulting model does not break down
in shallow water (where the Stokes number is O(1)), as is typical for models based
on Stokes-type expansions, but instead reduces to a Boussinesq-type approximation.
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In § 2 we define the wave field and bottom decomposition, introduce notational
conventions and a general treatment of secular forcing terms in the ordered boundary
value problem. The finite-depth solutions are given in § 3 and extended to shallow
water in § 4. Based on these results, a uniformly valid evolution equation is presented
in § 5 and the equivalence of asymptotic limits with established expressions from the
literature is addressed. Model simulations are compared to laboratory observations
in § 6, followed by a summary in § 7.

2. General theory
The starting point of our derivation is the governing set of equations for irrotational

flow of an incompressible, inviscid fluid:

∇2Φ + Φzz = 0, ∀z ∈ D, (2.1a)

Φtt + gΦz +

[
∂t + 1

2
∇Φ · ∇ + 1

2
Φz∂z

]
{|∇Φ|2 + (Φz)

2} = 0, z = η(x, y, t), (2.1b)

Φz + ∇h · ∇Φ = 0, z = −h(x, y), (2.1c)

gη + Φt + 1
2
(|∇Φ|2 + (Φz)

2) = 0. z = η(x, y, t). (2.1d)

Here Φ is a velocity potential function, η is the surface elevation and g denotes
gravitational acceleration. We use a Cartesian frame of reference with its origin at
the undisturbed free surface of the fluid: x, y denote the two horizontal coordinates
and z corresponds to the vertical coordinate, positive pointing upward. The operator
∇ ≡ 〈∂x, ∂y〉, where ∂x is a shorthand for partial differentiation with respect to the
subscripted variable. The Laplace equation (2.1a) follows from continuity. The free-
surface boundary condition (2.1b) combines the kinematic and dynamic conditions
while assuming a constant atmospheric pressure (see e.g. Phillips 1977, § 3.1 or
Dingemans 1997, § 1.3). Impermeability of the bottom is expressed by (2.1c), and
the surface elevation is related to the velocity potential by the dynamic free-surface
boundary condition (2.1d).

2.1. Decomposition for weakly two-dimensional topography

We consider nonlinear surface waves propagating in finite water depth over slowly
varying topography with weakly two-dimensional features. The topography is
considered one-dimensional to leading order with a superposed two-dimensional
perturbation, written as

h(x) = h(x) − h̃(x).

Here h represents the lateral average of h and h̃ the (two-dimensional) residue.
Without loss of generality, we let the x- and y-axes coincide with the principal and
lateral direction respectively, and since we are particularly interested in the description
of waves propagating from the deep open ocean into a shallow coastal area, we refer
to the principal direction as the cross-shore direction and the lateral direction as the
alongshore direction.

The magnitude of the lateral depth variations, h̃, is characterized by the small
parameter γ defined as

O(γ ) = O

(
h̃0

h0

)
� 1, (2.2)

where h̃0 is a characteristic amplitude of h̃ and h0 a reference depth.



396 T. T. Janssen, T. H. C. Herbers and J. A. Battjes

The nonlinearity of the wave field is governed by the parameter O(ε)=O(a0/Lv)�1,
where a0 and Lv denote a characteristic amplitude of the surface elevation and a
representative vertical length scale of the wave motion respectively. Since we consider
wave propagation from deep to shallow water we choose a generally applicable vertical
length scale Lv = µ/k0, where k0 is a representative wavenumber of the wave motion
and µ = tanh k0h0, which can be considered a generalized dispersion parameter
varying from O(1) in deep–intermediate water to O(k0h0) in shallow water (see
also Beji 1995; Kirby 1998).

The depth variations are assumed small over distances O(k−1
0 ), made explicit by the

parameter β , where

O(β) = O

(
∂xh

k0h

)
= O

(
|∇h̃|
k0h

)
� 1. (2.3)

We set the relative magnitudes of the relevant small parameters to O(β) = O(γ 2) =
O(ε2/µ2) and define multiple scales (see e.g. Chu & Mei 1970; Liu & Dingemans
1989; Suh et al. 1990):

〈tn, xn, yn〉 =

(
ε

µ

)n

〈t, x, y〉, n = {1, 2}. (2.4)

To make the ordering of the bottom perturbation explicit in the derivation we write

h̃ = γ ĥ, ∇h̃ = γ 2∇1ĥ (2.5)

where ĥ ∼ O(1) and ∇1 ≡ 〈∂x1
, ∂y1

〉.
In the present scaling the bottom slope is O(ε2/µ2), affecting wave evolution at

O(ε2) in deep–intermediate water (O(µ) ∼ O(1)) and O(ε) in shallow water (O(µ2) ∼
O(ε)). This approximation is well-suited to typical coastal bathymetry with a sloping
beach extending onto a relatively flat continental shelf. Moreover, the relative magni-
tude of the lateral depth variations, h̃, is introduced at lower order, O(ε/µ), to accur-
ately resolve wave propagation over shallow submerged bathymetric features such as
banks and shoals that are common in coastal areas. The scaling of (2.2)–(2.4) further
implies that the characteristic length scale of the two-dimensional topography is long,
O(µ/ε), compared with the surface wavelength and thus the back-scattering of waves
(induced by bottom undulations of about half the surface wavelength) is neglected in
the present approximation, consistent with estimates of wave scattering from natural
continental shelf topography presented in earlier studies (e.g. Ardhuin & Herbers
2002).

Following Chu & Mei (1970), the set (2.1) is solved by applying a perturbation
expansion of the surface elevation and velocity potential. In order to capture both the
leading-order effects of cubic resonances in deep–intermediate water and quadratic
resonances in shallow water we explicitly evaluate the bound-wave components
induced by quadratic wave–wave interactions:[

Φ

η

]
=

∞∑
n=1

εn

µn−1

{[
Φ (n,0)

η(n,0)

]
+

[
Φ (n,1)

η(n,1)

]
+

ε

µ2

[
Φ (n+1,2)

η(n+1,2)

]}
+ HBC. (2.6)

The (n, 0) components correspond to wave-driven mean flow, (n, 1) to free waves, and
(n + 1, 2) to quadratically coupled or bound waves. Anticipating the near-resonance
of quadratic nonlinear forcing terms in shallow water, these are scaled with ε/µ2

(= k0a0/(tanh k0h0)
3) which has the appropriate deep- and shallow-water asymptotes

of wave steepness, a0k0, and the Stokes number, a0/(k
2
0h

3

0) (Stokes 1847), respectively.
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The HBC in (2.6) denotes higher-order bound components (involving cubic and
higher-order, non-resonant interactions) that will not be considered in the present
analysis (see also Shemer et al. 2001).

The premise of a leading-order, alongshore-uniform topography supports a fre-
quency (ω)–alongshore wavenumber (λ) or angular-spectrum decomposition (see e.g.
Suh et al. 1990). Accordingly we write the primary wave field (lowest-order free
waves) as a summation of modulated plane waves propagating at discrete angles in
the positive x-direction:[

Φ (1,1)

η(1,1)

]
=

∞∑
p,q=−∞

p �=0

[
φ̃(1,1)

q,p

ζ̃ (1,1)
q,p

]
exp [i(λqy − ωpt)] =

∑
v

[
φ(1,1)

v

ζ (1,1)
v

]
Ev. (2.7)

Here λq = q
λ and ωp = p
ω in which 
λ and 
ω represent the discrete alongshore
wavenumber and angular frequency spacing respectively. The summation over v =
〈q, p〉 is a shorthand for the summation over all combinations of the discrete
frequencies and alongshore wavenumbers. We exclude zero-frequency components
(p = 0) since these are part of the mean flow and are treated separately (Appendix C).
The {φ(1,1)

v , ζ (1,1)
v } are slowly varying amplitudes while the rapid phase variations are

incorporated in Ev , given as

Ev = exp [i(ψv(x) + λqy − ωpt)], ψv(x) =

∫ x

�v(x
′) dx ′. (2.8)

Here �v = sgn(p)
√

k2
p − λ2

q , with sgn denoting the signum function, and kp is related
to the angular frequency, ωp , through the lowest-order dispersion relation. Since Φ

and η are real functions we have φ(1,1)
v = φ

(1,1)∗
−v and ζ (1,1)

v = ζ
(1,1)∗
−v , where ∗ denotes

the complex conjugate.
In the present work we consider only propagating modes. We omit exponentially

decaying (evanescent) modes, such as refractively trapped waves for which |λq | > kp ,
and vertical eigenmodes. Such non-propagating modes may e.g. be excited around
bathymetric features (refractive trapping) or on steep slopes and at domain boundar-
ies; they can be important locally, but are confined to the near field (typically a few
wavelengths) of their generation source. Away from such regions, at distances much
greater than O(�−1

v ), the wave field is accurately represented by the propagating modes
(Stamnes 1986). The complete solution to the linearized problem and further discus-
sion on the validity of the present approximation is given in § 19.1 of Stamnes (1986).

Using the spectral decomposition (2.7), the total wave field (2.6) can be expressed
as[

Φ

η

]
=

∞∑
n=1

εn

µn−1

{[
Φ (n,0)

η(n,0)

]
+

∑
v1

[
φ

(n,1)
1

ζ
(n,1)
1

]
E1 +

ε

µ2

∑
v1,v2

[
φ

(n+1,2)
12

ζ
(n+1,2)
12

]
E12

}
+ HBC. (2.9)

For notational convenience, we write E12...n = E1E2 . . . En and apply numerical sub-
scripts to identify individual wave components, for example φ

(n,1)
1 is a shorthand for

φ(n,1)
v1

denoting the velocity potential function for free wave component v1. Double
subscripts without separator always refer to the corresponding bound wave com-
ponent; accordingly, φ

(2,2)
12 denotes the bound wave component resulting from the

quadratic interaction of φ
(1,1)
1 and φ

(1,1)
2 .

The lateral variability of the wave field is captured by the decomposition in angular
components so that the modulation of the amplitudes due to wave–wave, wave–
current and wave–bottom interactions, as well as the effects of non-stationarity, take
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place on slow scales in x and t alone:[
φ(n,m)

am

ζ (n,m)
am

]
=

[
φ(n,m)

am
(z, x1, t1, x2, t2)

ζ (n,m)
am

(x1, t1, x2, t2)

]
, m = 1, 2, n � m, (2.10)

where the subscript am = 1 for m = 1 and am = 12 for m = 2, corresponding to
components v1 and {v1, v2} respectively.

2.2. The ordered solution

Upon substituting the wave field decomposition in the Laplace equation (2.1a), the
bottom boundary condition (2.1c) and the free-surface boundary condition (2.1d),
these can be written in the form (see e.g. Chu & Mei 1970; Liu & Dingemans 1989)(

d2
z − k2

am

)
φ(n,m)

am
= R(n,m)

am
, ∀z ∈ D, (2.11a)

dzφ
(n,m)
am

= F (n,m)
am

, z = −h, (2.11b)

ζ (n,m)
am

=
1

g

[
iωam

φ(n,m)
am

− H (n,m)
am

]
, z = 0, (2.11c)

where dz denotes differentiation with respect to z, n � m and the forcing terms R(n,m)
am

,

F (n,m)
am

and H (n,m)
am

on the right-hand side of (2.11) depend on lower-order results and
are specified below as needed.

A general solution to (2.11a) and the condition (2.11b) can be found through varia-
tion of parameters (e.g. Chu & Mei 1970):

φ(n,m)
am

= −Ch Qam

k2
am

[
I

(n,m)
1

(
Qam

)
+ M(n,m)

am

]
+

Sh Qam

k2
am

[
I

(n,m)
2

(
Qam

)
+ kam

F (n,m)
am

]
(2.12)

where M(n,m)
am

is an integration constant,

Qam
= kam

(h + z), Ch{} = cosh{}, Sh{} = sinh{} (2.13)

and

I
(n,m)
1

(
Qam

)
=

∫ Qam

0

R(n,m)
am

Sh Q′
am

dQ′
am

, (2.14)

I
(n,m)
2

(
Qam

)
=

∫ Qam

0

R(n,m)
am

Ch Q′
am

dQ′
am

. (2.15)

Insertion of (2.12) in the combined free-surface boundary condition (2.1b) yields

∆am

[
I

(n,m)
1

(
qam

)
+ M(n,m)

am

]
− Γam

[
I

(n,m)
2

(
qam

)
+ kam

F (n,m)
am

]
= −S(n,m)

am

kam

gSh qam

(2.16)

where the forcing term S(n,m)
am

is the result of the perturbation expansion for the wave
field, the expansion of the coordinates in multiple scales and the Taylor expansion of
(2.1b) around z = 0. We have used the shorthand notation

∆am
= 1 −

ω2
am

gkam
Tam

, Γam
=

1

Tam

−
ω2

am

gkam

, Tam
= tanh qam

, qam
= kam

h, (2.17)

where ∆am
can be interpreted as a measure of resonance mismatch.

Note from (2.16) that m = 1 is a special case in the sense that ∆a1
vanishes (i.e. the

forcing is secular) so that (2.16) constitutes a solvability condition on the lower-order
wave field, but with ∆a1

= 0 it leaves the homogeneous part of φ
(n,1)
1 (namely M(n,1)

a1
)
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undetermined (see also Chu & Mei 1970; Liu & Dingemans 1989). The derivation of
the third-order evolution equations involves operations on φ

(2,1)
1 and thus the com-

plete solution for φ
(2,1)
1 , including the contribution from M(2,1)

a1
, is needed to consistently

derive such third-order expressions. To this end, Chu & Mei (1970) asymptotically
matched their second-order result to the corresponding deep-water solution, whereas
Liu & Dingemans (1989) derived an evolution equation for the combined first- and
second-order free wave (m = 1) potential amplitudes. Kennedy & Kirby (2003) dis-
carded the homogeneous contribution at second order altogether, which in their
context is equivalent to the approach of Liu & Dingemans (1989). In the present
context these approaches would either result in ambiguous results or yield modific-
ations of the wave field due to wave–bottom interactions even in deep water, which
must be rejected on physical grounds. Therefore, we pursue an explicit derivation
of the second-order free wave potential from first principles that includes the
contribution from M(2,1)

a1
and assures a proper deep-water asymptote (i.e. vanishing

contributions of wave–bottom interactions in deep water). To this end, the case m = 1
(free waves) is considered as the limit of a vanishing mismatch from resonance by
writing

ω2
a1

= lim
∆a1

→0
gka1

Ta1

(
1 − ∆a1

)
(2.18)

and we expand Γa1
and S(n,1)

a1
in terms of ∆a1

according to

Γa1
= Γ (0)

a1
+ ∆a1

Γ (1)
a1

, (2.19)

S(n,1)
a1

=

1∑
j=0

∆j
a1

j!

djS(n,1)
a1

d∆
j
a1

∣∣∣∣
∆a1

=0

+ O
(
∆2

a1

)
= S(n,1,0)

a1
+ ∆a1

S(n,1,1)
a1

+ O
(
∆2

a1

)
. (2.20)

Insertion of (2.19) and (2.20) into (2.16) yields

M(n,1)
a1

= lim
∆a1

→0

{
1

∆a1

[
Γ (0)

a1

(
I

(n,1)
2

(
qa1

)
+ ka1

F (n,1)
a1

)
− ka1

gSh qa1

S(n,1,0)
a1

]
+ Γ (1)

a1

(
I

(n,1)
2

(
qa1

)
+ ka1

F (n,1)
a1

)
− I

(n,1)
1

(
qa1

)
− ka1

gSh qa1

S(n,1,1)
a1

+ O
(
∆a1

)}
(2.21)

and thus for vanishing ∆a1
we obtain from (2.21)

M(n,1)
a1

= Γ (1)
a1

(
I

(n,1)
2

(
qa1

)
+ ka1

F (n,1)
a1

)
− I

(n,1)
1

(
qa1

)
−

k2
a1

ω2
a1

S(n,1,1)
a1

Ch qa1

(2.22)

provided that the terms between square brackets in (2.21), multiplied by ∆−1
a1

, cancel:

1

ka1

∫ qa1

0

R(n,1)
a1

Ch Q′
a1

dQ′
a1

+ F (n,1)
a1

=
Ch qa1

g
S(n,1,0)

a1
. (2.23)

Equation (2.22) unambiguously defines the homogeneous part of the velocity potential
while (2.23) is the usual solvability condition. The latter is also found if the limit
is not taken explicitly (as done here) but the forcing is considered secular from the
outset; however, in that case the contribution given in (2.22) remains undetermined.

For m = 2 we have ka2
= k12 = |k1 + k2|, ωa2

= ω12 = ω1 + ω2 and the resonance
mismatch is generally O(µ2). To make the order explicit we write ∆a2

= µ2∆̂a2
with

∆̂a2
∼ O(1). The lowest-order forcing problem for m = 2 (n = 2) is inhomogeneous
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only in the free-surface boundary condition involving the forcing term S(2,2)
a2

. Since in

(2.9) we expand the bound waves as O(ε2/µ2) from the outset rather than O(ε2) we
correspondingly write

M(2,2)
a2

= − ka2

gTa2
∆̂a2

S(2,2)
a2

Ch qa2

. (2.24)

In the present analysis, quadratic bound wave contributions of higher than second
order (n > 2) are considered only in the near-resonant shallow-water limit (see § 4)
where the Stokes number is O(1).

3. Deep–intermediate water solution
In deep–intermediate water the representative vertical length scale Lv = k−1

0 and
the nonlinearity parameter, ε, represents wave steepness. Here µ ∼ O(1) and thus can
be omitted, simplifying the analysis to an expansion in a single small parameter, ε.
Our expression for the second-order free wave potential differs from earlier studies
(for the reasons explained in § 2.2), leading to modifications of the O(ε3) evolution
equations.

3.1. First order, O(ε)

For m = 1 the lowest-order solution renders the boundary value problem (2.11)
homogeneous, yielding for the primary waves:

φ
(1,1)
1 = ϕ

(1,1)
1 f1, f1 =

Ch Q1

Ch q1

, ϕ
(1,1)
1 = −i

g

ω1

ζ
(1,1)
1 ,

and the dispersion relation

ω2
1 = gk1T1, (3.1)

where ϕ(n,m)
am

= φ(n,m)
am

|z=0 is the velocity potential amplitude evaluated at the undisturbed
surface.

3.2. Second order, O(ε2)

At this order, for m = 1, the set (2.11) is inhomogeneous with secular forcing terms
including a quadratic forcing term involving a product of the bottom perturbation,

ĥ, and the wave potential, ϕ
(1,1)
1 , that accounts for the interaction of the wave field

with the lateral depth variations:

R
(2,1)
1 = −i2�1φ

(1,1)
1,x1

, (3.2a)

S
(2,1)
1 = 2iω1ϕ

(1,1)
1,t1

, (3.2b)

F
(2,1)
1 = − k2

1

Ch q1

G1

{
ĥ, ϕ

(1,1)
2

}
. (3.2c)

The forcing term, F
(2,1)
1 , involves the operator

Gi{a, bj } = Fi{a(y)F−1{bj exp [iψj ]}} exp [−iψi], (3.3)

where Fi denotes the ith component of the discrete Fourier transform (DFT) with
respect to the lateral coordinate, and F−1 denotes the inverse discrete Fourier
transform (IDFT). The interaction with the topography is thus modelled as a triad
interaction between two wave components with equal frequency and a difference
alongshore wavenumber matching that of the (zero-frequency) bottom component,
i.e. the triad {ω1, λ1; ω1, λ2; 0, λ1 − λ2}. This scattering approach, as opposed to more
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conventional approaches for refraction–diffraction modelling, describes wave
propagation over two-dimensional topography by a set of one-dimensional (apart
from time) transport equations.

From (2.12), using (2.22), we find for the potential function φ
(2,1)
1

φ
(2,1)
1 =

[
K(1,2)

1 − i

(
�1

k2
1

ϕ
(1,1)
1,x1

Q1TQ1
− ik1G1

{
ĥ, ϕ

(1,1)
2

}
TQ1

)]
Ch Q1

Ch q1

(3.4)

where

TQ1
=

Sh Q1

Ch Q1

, K(2,1)
1 = −i

[
ϕ

(1,1)
1,t1

ω1

− �1

k2
1

ϕ
(1,1)
1,x1

q1T1 + ik1T1G1

{
ĥ, ϕ

(1,1)
2

}]
. (3.5)

Setting K(2,1)
1 = 0 in expression (3.4) yields the corresponding expression in Suh et al.

(1990). This implies a non-vanishing contribution of the lateral depth variations to
both the second-order velocity potential and the corresponding second-order surface
elevation, ζ

(2,1)
1 , which persists in deep water, as can be easily verified. Taking K(2,1)

1

into account, as in (3.4), determines φ
(2,1)
1 unambiguously, such that the topography

has a vanishing effect on the velocity potential in deep water. The corresponding
surface elevation correction at this order, ζ

(2,1)
1 , vanishes identically, which can be

seen from inserting (3.4) into (2.11c).
The solvability condition (2.23) for n = 2 on the lowest-order wave field is

L(1)
{
ϕ

(1,1)
1

}
= ξ

(2,1,wb)
1 (3.6)

where

L(1){} =
[
∂t1 + V1∂x1

]
, ξ

(2,1,wb)
1 = i

g

2ω1

k2
1

(
1 − T 2

1

)
G1

{
ĥ, ϕ

(1,1)
2

}
, (3.7)

in which V1 = ((g�1)/(2ω1k1))(T1+q1(1−T 2
1 )) = (�1/k1)Cg,1 is the cross-shore (principal

direction) component of the linear group speed vector. The forcing term ξ
(2,1,wb)
1

describes the lowest-order interaction between the surface waves and topography,
indicated by the superscript wb. This convolution-type term redistributes the complex
amplitudes over the alongshore wavenumber components, thus correcting the wave
ray geometry relative to Snel’s law† to account for the lateral variability of the
topography; lateral diffraction is accounted for implicitly through the summation of
the angular wave components (see also Stamnes 1986; Dalrymple & Kirby 1988;
Dalrymple et al. 1989).

For m = 2 we find forcing terms quadratic in the free wave components that
generally result in components that are coupled or bound to the primary waves;
in fact they represent the spectral generalization of the second-order harmonic in a
periodic wave train first described by Stokes (1847). We will refer to these components
with m = 2 as bound waves. The non-zero forcing term is S

(2,2)
12 = iD1,2ϕ

(1,1)
1 ϕ

(1,1)
2 ,

where D1,2 is a quadratic wave–wave interaction coefficient given in Appendix A. The
corresponding velocity potential is given by

φ
(2,2)
12 = ϕ

(2,2)
12

Ch Q12

Ch q12

, ϕ
(2,2)
12 = i

D1,2

gk12T12∆̂12

ϕ
(1,1)
1 ϕ

(1,1)
2 . (3.8)

† This is sometimes spelled as ‘Snell’s law’. The quantitative law of refraction was discovered
by the Dutch scientist Willebrord Snel van Royen. His name was latinized into Snellius and later
incorrectly de-latinized into Snell. Therefore, the spelling ‘Snel’s law’ is historically appropriate. See
also Dingemans (1997, p. 67).
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Expressions (3.8) are in agreement with Hasselmann (1962, § 4).

3.3. Third order, O(ε3)

At this order, for m = 1, we incorporate modulations due to the non-stationarity,
large-scale bottom slope, cubic wave–wave and wave–bottom interactions, and the
interaction with the mean flow. After some algebraic manipulation, the solvability
condition (2.23) at this order yields

L(2)
{
ϕ

(1,1)
1

}
= ξ

(3,1,wb)
1 + ξ

(3,1,wbb)
1 + ξ

(3,1,wc)
1 + ξ

(3,1,www)
1

− 1

ω1

∑
v2,v3,v4

D2,34ϕ
(1,1)
2 ϕ

(2,2)
34 δλ,ω234;1E234;1 (3.9)

where the forcing terms ξ
(3,1,j )
1 are specified below,

L(2){} =

[
∂t2 + V1∂x2

+
1

2
∂x2

V1 − i

2
M1∂

2
x1

]
, (3.10)

M1 =

(
�1

k1

)2
∂2ω1

∂k2
1

+

(
1 −

(
�1

k1

)2
)

Cg,1

k1

, (3.11)

and we make use of the notional contractions

Eijk;l = EijkE
∗
l , δλ,ωijk;l = δ(λi + λj + λk − λl)δ(ωi + ωj + ωk − ωl) (3.12)

with δ representing a discrete Dirac delta or unit impulse function (see e.g. Oppenheim
& Schafer 1989).

Equation (3.9) is the third-order transport equation for the free-wave components.
The left-hand-side operator in (3.9) includes the linear effects of shoaling, refraction
and diffraction for waves propagating over an alongshore-uniform topography (h).
The forcing terms on the right-hand side of (3.9) take into account the third-order
effects of the weakly two-dimensional topography (h̃) and nonlinearity on the wave

evolution. In particular, ξ
(3,1,wb)
1 and ξ

(3,1,wbb)
1 account for the interaction with the

lateral depth variations; both terms are linear in the surface elevation while linear
and quadratic in the bottom perturbation respectively. The terms ξ

(3,1,wc)
1 and ξ

(3,1,www)
1

describe the interaction with the mean flow and cubic nonlinear wave interactions
respectively. Note that there is no wave–wave–bottom (wwb) forcing term in (3.9)
because in the present approximation the bottom wavenumbers are small relative to
the wavenumber mismatch of quadratically forced bound waves and thus result in
non-secular contributions.

The convolution term on the right-hand side of (3.9) represents the quadratic
interaction between bound and free wave components, which is given in explicit form
for later use. Since (3.9) represents an intermediate result, explicit expressions for
the remaining forcing terms are omitted for brevity. If needed they can be recovered
from the final expressions in physical coordinates and variables which are included
in Appendix B.

We combine (3.6) and (3.9) while absorbing the small parameters so that in physical
coordinates and variables we have

L
{
ϕ

(f)
1

}
= ξ

(f,wb)
1 + ξ

(f,wbb)
1 + ξ

(f,wc)
1 + ξ

(f,www)
1 − 1

ω1

∑
v2,v3,v4

D2,34ϕ
(f)
2 ϕ

(b)
34 δλ,ω234;1E234;1 (3.13)
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where ϕ
(f)
1 = εϕ

(1,1)
1 and ϕ

(b)
34 = ε2ϕ

(2,2)
34 and the superscripts f and b refer to free and

bound waves respectively; the operator L{} = εL(1){} + ε2L(2){}. The forcing terms

ξ
(f,j )
1 are equivalent to the ξ

(j )
1 given in Appendix B with ϕ1 consistently replaced

by ϕ
(f)
1 .

4. Extension to shallow water
The main result of § 3, the transport equation (3.13), is valid in deep–intermediate

water depth but includes a quadratic wave–wave interaction term that involves the
second-order bound waves. Closure by means of substitution of expressions (3.8) (in
physical variables) for the bound wave amplitudes renders (3.13) incompatible with the
limit O(µ2) → O(ε) where the quadratic interactions approach resonance. To include
this limit with O(ε2) accuracy we extend our expansion of the bound components to
higher order, taking into account terms that are of O(ε3/µ2), O(ε4/µ4), i.e. all terms
that are O(ε2) or lower order as O(µ2) → O(ε). Although this selective inclusion of
higher-order terms may appear to conflict with the expansion for deep–intermediate
depth, the ordered expansion is merely a device to make the relative magnitude of
terms explicit and is used here to identify terms that can formally be neglected in deep–
intermediate depth (where they are smaller than the general order of approximation)
but are essential in shallow regions where the Stokes number is O(1).

Here we consider the shallow-water limit where Lv =h0, ε = a/h and use the
Boussinesq approximation O(µ2) ∼ O(ε). Secular contributions from quadratic inter-
actions to the wave field evolution are removed by introducing the composite bound
wave amplitude

ϕ
(2,2)
1 =

∑
v2,v3

ϕ
(2,2)
23 δλ,ω23;1E23;1 (4.1)

which can be considered the ‘bound’ wave contribution to spectral component v1.
In shallow water, where the forcing is secular, ϕ

(2,2)
1 is a slowly varying quantity

that can be described using the same WKB approximation that was used to derive
the evolution equations for ϕ(1,1) (namely (3.6), (3.9)). Collecting terms of O(ε3/µ3)
and O(ε4/µ4) (that become O(ε3/2) and O(ε2) in shallow water respectively) yields
forcing terms R

(3,2)
1 , S

(3,2)
1 , F

(3,2)
1 and R

(4,2)
1 , S

(4,2)
1 , F

(4,2)
1 that – apart from the wave–

wave and wave–current interactions in S
(4,2)
1 – are identical to R

(2,1)
1 , S

(2,1)
1 , F

(2,1)
1 and

R
(3,1)
1 , S

(3,1)
1 , F

(3,1)
1 respectively with ϕ

(1,1)
1 and ϕ

(2,1)
1 consistently replaced by ϕ

(2,2)
1 and

ϕ
(3,2)
1 . For brevity we omit the details (which are similar to those in the analysis

for deep–intermediate water) and give the resulting evolution equations for ϕ
(2,2)
1 . At

O(ε3/µ3) we obtain

L(1)
{
ϕ

(2,2)
1

}
= ξ

(3,2,wb)
1 (4.2)

with ξ
(3,2,wb)
1 identical to ξ

(2,1,wb)
1 with ϕ

(1,1)
1 replaced by ϕ

(2,2)
1 . At O(ε4/µ4) we find

L(2)
{
ϕ

(2,2)
1

}
= ξ

(4,2,wb)
1 + ξ

(4,2,wbb)
1 − 1

2ω1

∑
v2,v3

D2,3ϕ
(2,2)
2 ϕ

(2,2)
3 δλ,ω23;1E23;1. (4.3)

The ξ
(4,2,j )
1 on the right-hand side of (4.3) are identical to ξ

(3,1,j )
1 on the right-hand

side of (3.9) again with ϕ
(1,1)
1 consistently replaced by ϕ

(2,2)
1 . Equations (4.2), (4.3) are

higher-order expressions describing the evolution of the ϕ
(2,2)
1 on the slow scales; these

expressions are needed solely in the near-resonant limit (shallow water), which justifies
the premise of slow variation of the component amplitudes ϕ

(2,2)
1 . The similarity with
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(3.6), (3.9) is expected since they are obtained through a similar analysis (WKB);
differences are due to the fact that we pursue only O(ε2) accuracy in shallow water
(in contrast to deep–intermediate water where we retain O(ε3) accuracy), and the
quadratic interactions in (4.3) involve a product of bound waves (as opposed to the
free wave–bound wave interaction in the corresponding term in (3.9)).

It should be noted that the quadratic response may also contain fast modulations
due to large resonance mismatches, even in shallow water for non-collinear inter-
actions. The governing evolution equation, valid from deep–intermediate to shallow
water, is obtained by combining (4.2) and (4.3), changing to physical coordinates while
accounting for variations on the fast space scale related to the resonance mismatch,
and utilizing expressions (3.8) for the bound wave amplitudes. In physical coordinates
and variables we have

L
{
ϕ

(b)
1

}
= ξ

(b,wb)
1 + ξ

(b,wbb)
1 − V1

∑
v2,v3

D2,3

gJ2,3

(
ϕ

(f)
2 ϕ

(f)
3 +

gJ2,3

2ω1V1

ϕ
(b)
2 ϕ

(b)
3

)
δλ,ω23,1E23;1 (4.4)

where ϕ
(b)
1 = ε2/µ2ϕ

(2,2)
1 , J2,3 = k23T23
23/Λ2,3 and Λ2,3 = �2 + �3 − �2+3. The forcing

terms ξ
(b,j )
1 (involving wave–bottom interaction) are equivalent to the ξ

(j )
1 given in

Appendix B with ϕ1 consistently replaced by ϕ
(b)
1 , indicated by the b in the superscript.

5. A generalized third-order evolution model
The evolution equations (3.13) and (4.4) represent a coupled set of equations for the

free and bound wave components respectively. A transport equation for the composite
amplitude ϕ1 = ϕ

(f)
1 + ϕ

(b)
1 is obtained by summing (3.13) and (4.4):

L{ϕ1} = ξ
(wb)
1 + ξ

(wbb)
1 + ξ

(wc)
1 + ξ

(www)
1

− V1

∑
v2,v3

D2,3

gJ2,3

(
ϕ

(f)
2 ϕ

(f)
3 +

gJ2,3

2ω1V1

ϕ
(b)
2 ϕ

(b)
3

)
δλ,ω23,1E23;1

− 1

ω1

∑
v2,v3,v4

D2,34ϕ
(f)
2 ϕ

(b)
34 δλ,ω234;1E234;1. (5.1)

The forcing terms ξ
(j )
1 are given in explicit form in Appendix B. Note that

lim
µ2→ε

gJ2,3

2ω2+3V2+3

= 1 + O(ε) (5.2)

so that, upon substituting ϕ1 in the products in the first convolution sum on the RHS

of (5.1), we can replace ϕ
(f)
1 by ϕ1 and substitute the second-order bound wave solu-

tion (3.8) for ϕ
(b)
34 in the remaining terms. These operations result in the closed-form

equation

L{ϕ1} = ξ
(wb)
1 + ξ

(wbb)
1 + ξ

(wc)
1 + ξ

(M,www)
1 + ξ

(ww)
1 (5.3)

which retains O(ε2) accuracy in the limit O(µ2) → O(ε). Here ξ (ww) and ξ (M,www)

account for quadratic and cubic interactions in ϕ1; the latter is modified with respect
to the finite depth result, indicated by the M in the superscript (explicit expres-
sions are given in Appendix B); it ensures proper cubic nonlinearity in finite depth
while retaining O(ε2) accuracy in shallow water. Equation (5.3), the main result of
the present analysis, is a one-dimensional (in space) evolution equation for weakly
nonlinear waves propagating from deep to shallow water over weakly two-dimensional
topography. Although (5.3) does not consider bound and free wave components
explicitly, it fully accounts for near-resonant cubic interactions in deep–intermediate
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depth and near-resonant quadratic interactions in shallow water. It is a closed set
of equations, apart from the term involving the mean-flow quantities, for which
expressions are given in Appendix C. Since the mean flow is modelled without z-
dependence the model is suitable for water depths where waves ‘feel the bottom’. In
deeper water (εk0h0 � O(1)) more general expressions for the mean flow are needed,
which is considered in Peregrine (1983).

Equation (5.3) describes the evolution of the velocity potential amplitude. The
corresponding spectral amplitudes for the surface elevation function can be readily
obtained from

ζ1 = i
ω1

g
ϕ1 − 1

g

∑
v2,v3

R2,3ϕ2ϕ3δ
λ,ω
2,3;1E2,3;1 (5.4)

where the nonlinear term is a second-order correction required to accurately include
second-order bound waves in the free-surface elevation. This term is O(ε2) and thus
a genuine second-order term irrespective of the resonance mismatch. In contrast, the
contribution to ϕ1 due to quadratic interactions is O(ε2/µ2) and becomes an O(ε)
secular forcing term in shallow water with leading-order contributions over distances
O(ε−1). In view of this, the nonlinear term in (5.4) – contributing a local, second-order
correction without affecting the wave field evolution – is usually neglected in models
for near-resonant quadratic interactions (e.g. Agnon et al. 1993; Kaihatu & Kirby
1995), which is consistent with the premise of that derivation. Since the present model
allows for arbitrary resonance mismatch (and thus includes off-resonant, second-
order bound waves), the inclusion of the nonlinear term in (5.4) is necessary to obtain
second-order accuracy in the surface elevation matching Stokes’ second-order theory
(see also Bredmose et al. 2002).

In the following subsections we describe special cases of the model presented here,
for deep–intermediate (§ 5.1) and shallow (§ 5.2) water and compare the results with
expressions published previously.

5.1. Deep–intermediate water

We consider wave propagation in deep–intermediate water (k0h0 ∼ O(1)), such that
quadratic interactions result in second-order bound waves and nonlinear resonances
are accounted for through the cubic forcing term ξ (www) given in Appendix B. It can
be shown through some algebraic manipulation that the interaction coefficient H1,2,3

in ξ (www) is equivalent to that of Herterich & Hasselmann (1980) (a corrected version
of the interaction term given in Hasselmann 1962). Furthermore, it can be shown that
prediction of the dispersion corrections from the pairwise, third-order interaction of
a bichromatic directional wave train in deep water agree with expressions derived by
Longuet-Higgins & Phillips (1962) (when accounting for the misprint in that paper
previously pointed out by Hogan, Gruman & Stiassnie (1988) and Willebrand (1973,
1975)).

If we further restrict the wave field to a single angular component

η = ζ exp

[
i

(∫ x

� dx + λy − ωt

)]
+ ∗, (5.5)

where ∗ denotes the complex conjugate of the preceding term, then (5.3) reduces to[
∂t + V ∂x +

1

2
∂xV − i

2

[(
�

k

)2
∂2ω

∂k2
+

(
1 −

(
�

k

)2)
Cg

k

]
∂2

x

]
ζ

= −i
k2ω

4T 2
(9T −2 − 12 + 13T 2 − 2T 4)|ζ |2ζ + iζ

[
k2

2ω
(1 − T 2)∂t − k · ∇

]
Φ. (5.6)
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This expression, coupled to the mean-flow equations in Appendix C, agrees with
corresponding expressions given by e.g. Liu & Dingemans (1989) if likewise lateral
modulation of the wave amplitude is omitted and higher-order refraction corrections
(included in Liu & Dingemans 1989) are excluded. For small-angle wave propagation
over a horizontal bottom (5.3), along with the expressions for the mean-flow in
Appendix C, can readily be written in the form of Davey & Stewartson (1974).

For one-dimensional wave propagation (�i = ki) in deep–intermediate water depth,
(5.6) can be shown to agree with expression (2.14) in Djordjević & Redekopp (1978)
(if the last σ in their expression (2.17) is replaced by σ 2) and with the corresponding
expressions given in Mei (1983, § 12). For the reduced case of Stokes waves, i.e. one-
dimensional periodic waves of permanent shape in uniform depth, the model is in
agreement with the expressions derived by Stokes (1880) to third order in wave
steepness.

5.2. Shallow water

When considering the propagation of steady waves over alongshore-uniform bathy-
metry while omitting interaction with the mean flow and cubic wave–wave interactions
(thus implicitly restricting the model to fairly shallow water), the evolution equation
(5.3) is equivalent to that in Bredmose et al. (2002). It represents a one-dimensional
generalization, with respect to the treatment of the quadratic interactions, of the
earlier models by Agnon et al. (1993), Kaihatu & Kirby (1995), Sheremet (1996), and
Eldeberky & Madsen (1999).

Taking the shallow-water limit of (5.3) using the Boussinesq scaling O(ε/µ2) = O(1),
yields to lowest order the models of Herbers & Burton (1997) and (for unidirectional
waves) Freilich & Guza (1984, the ‘consistent shoaling model’).

6. Numerical evaluation and comparison to data
In this section we compare model results with laboratory observations of steady

unidirectional waves to verify the generalized validity of the nonlinear interaction
terms that account for cubic resonances in deep–intermediate water and quadratic
resonances in shallow water. Additionally, a comparison with observations of wave
propagation over two-dimensional topography is presented to validate the model’s
ability to describe accurately the combined effects of refraction, lateral diffraction and
harmonic generation.

For a steady wave field (5.3) reduces to(
d

dx
+

1

2V1

dV1

dx

)
ϕ1 = Ξ

(wb)
1 + Ξ

(wbb)
1 + Ξ

(ww)
1 + Ξ

(www)
1 + Ξ

(wc)
1 (6.1)

where Ξ
(ww)
1 = ξ

(ww)
1 /V1, Ξ

(www)
1 = ξ

(M,www)
1 /V1 and the remaining forcing terms are

given in Appendix B. The corresponding surface elevation amplitudes, ζ1, are found
through (5.4).

6.1. One-dimensional wave propagation

For the cases of one-dimensional wave propagation we numerically evaluate (6.1)
without the terms involving the lateral depth variability, i.e. for λ = 0. The forcing
term Ξ

(wc)
1 = Ξ

(wc)
p1,0

is given as

Ξ
(wc)
p1,0

= i
�p1,0

Vp,0

ϕp1,0

∑
p2

ωp2
�p2,0

gh
|ϕp2,0|2. (6.2)
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The Ξ
(wc)
p1,0

accounts for the effects of the attendant return current – to ensure zero net
mass flux – on the wave propagation. The predicted wave-induced water level changes
(i.e. set-down) were found to be everywhere smaller than 0.1% of the undisturbed
water depth, and are neglected here.

The model is initialized at the up-wave boundary with the observed primary spec-
tral component(s) obtained from a Fourier-transformed time series at that loca-
tion with added (theoretical) second-order harmonics. This boundary condition was
chosen, instead of simply utilizing the full observed spectrum, to minimize spurious
modulations in the computations induced by spectral leakage effects as a result of
small imperfections in e.g. wave generation or recording devices (see also Shemer
et al. 2001).

The ordinary differential equations (6.1) are integrated using a standard fourth-
order, fixed-step-size, Runge–Kutta scheme.

6.1.1. Evolution of wave groups in intermediate water depth

The third-order model (6.1) is compared to observations of periodic wave groups
propagating in relatively deep water reported by Shemer et al. (2001), to verify the
model’s representation of the deep-water nonlinear physics (i.e. near-resonant cubic
interactions). The experiments were conducted in a wave flume, 18 m long and 1.2 m
wide, with a uniform water depth of 0.60m. The positive x-axis is in the direction of
propagation with the origin at the wave generator. For more detailed information on
the experimental set-up and the complete set of experiments conducted we refer to
Shemer et al. (1998, 2001).

The wave field consists of a modulated carrier wave with period T0 = 0.9 s. The
wave board is driven by a signal of the form

s(t) = s0| cos (Ω0t)| cos (ω0t), Ω0 =
ω0

20
, (6.3)

where ω0 = 2π/T0. The spectrum of this signal is characterized by a maximum at
ω0 and sidebands at integer multiples of 2Ω0 with the two nearest to ω0 being
most significant. For the case considered here k0a0 ≈ 0.21, where k0 is related to ω0

through the linear dispersion relation and a0 is taken (after Shemer et al. 1998) as
the maximum amplitude of the carrier wave in a group close to the wave generator.

The model is initialized with the spectral components at ω0 and ω0 ± 2Ω0 of a time
series of 18 s (i.e. 20 wave periods) duration observed at x = 0.245 m (re-sampled with
N = 1024 points and 
t = 0.0176 s). Second-order components are computed using
Stokes’ second-order theory (equation (3.8)) and included in the up-wave boundary
condition. We compute the evolution of an equidistant array of 65 frequencies with

ω = 2π/(N
t). The integration is performed using a step size, 
x, of 0.1m.

In figure 1 we compare the observed (circles) and predicted (solid line) time series at
four positions: x = {0.245, 1.845, 6.98, 8.425} m. The initially near-symmetrical wave
groups develop strong left–right asymmetry of the envelope with steep fronts and
gently sloping rears as also observed in the experiments reported by e.g. Feir (1967).
The asymmetry can be explained heuristically by the combined effects of amplitude
and frequency dispersion (Lighthill 1978, p. 462). Initially the larger waves in the group
propagate fastest under the effects of amplitude dispersion, reducing wavelengths in
the front of the group and increasing those in the rear; the associated group speed
variation further enhances the localization of energy in the front of the groups
resulting in increasingly forward leaning of the wave groups as observed in the
experimental data.
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Figure 1. Time series comparison of observed and predicted nonlinear wave group evolution
in uniform depth. The carrier frequency ω0 = 2π/(0.9 s), water depth = 0.6 m, ε ≈ 0.21. Circles
denote observed surface elevations from Shemer et al. (1998, 2001); solid line denotes model
result. Panels (a)–(d) correspond to positions {0.245, 1.845, 6.98, 8.425} m.

The model predictions accurately reproduce both the increasing asymmetry of the
envelope and the evolution of the individual waves. Apart from some discrepancies in
the less energetic region between groups, the agreement is excellent; this demonstrates
the model’s ability to accurately predict wave group evolution resulting from near-
resonant cubic wave–wave interactions in deep–intermediate water depth.

Model simulations (not shown here) extended to larger distances from the wave-
maker than for which observations were available in the experimental data, indicate
that the groups eventually split into a group consisting of the higher waves and
one with the lower waves. The higher-wave group leads and eventually coalesces with
the preceding low-wave group followed by recurrence-type behaviour qualitatively
similar to that observed and discussed in Lo & Mei (1985). Intermittent wave breaking
due to increased steepness (k0a ≈ 0.34 was observed in the numerical simulations) will
probably result in only partial recurrence.
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Figure 2. Schematic representation of the trapezoidal bottom profile of Luth et al. (1994);
circles at zb = 0 denote wave gauge positions.

6.1.2. Wave propagation over a submerged obstacle

To test the model’s ability to predict harmonic generation due to near-resonant
quadratic interactions over variable depth in relatively shallow water, we consider the
propagation of waves over a trapezoidal shoal in a laboratory flume (Luth, Klopman
& Kitou 1994; Beji & Battjes 1993), a schematic representation of which is shown in
figure 2. The up- and downslope of the shoal are 1:20 and 1:10 respectively. Away
from the shoal the uniform water depth is 0.80 m, and the minimum depth over
the shoal is 0.20 m. The wave generator is positioned at x = 0 and at x = 46 m a
wave absorber was installed to ensure uni-directional wave propagation in the area of
interest; circular markers in the figure denote wave gauge positions. The bathymetrical
dimensions are those reported by Luth et al. (1994), which is a scaled version (by a
factor of 2) of the set-up used by Beji & Battjes (1993). The wave field characteristics
were scaled accordingly to reproduce cases reported by Beji & Battjes (1993).

The incident wave train is monochromatic with period T0 = 2.86 s and amplitude
0.02 m. The model is initialized with the spectral component at ω0 of a (re-sampled)
time series of 25.71 s duration (512 points at 0.0502 s intervals) observed at x = 3.04 m.
The first harmonic is computed using Stokes’ second-order theory (equation (3.8))
and included in the up-wave boundary condition.

The numerical integration is performed for 60 equidistant frequency components
with 
ω = 2π/(N
t) with a spatial step size of 0.1m.

Figure 3 shows a comparison of observed and predicted surface elevation time series
for positions x = {20.04, 24.04, 28.04, 30.44, 33.64, 41.04} m. The model succesfully
captures the initial steepening and forward leaning of the waves on the up-slope
as well as the enhancement and release of higher harmonics over the shoal and
the down-slope; the agreement between observed and predicted time series is
excellent, even at the farthest location x =41.04 m (figure 3). Similar agreement
with somewhat larger discrepancies in the details of the wave profile was reported
by Beji & Battjes (1994), who compared simulations of a Boussinesq model with
improved dispersion characteristics (Madsen & Sørensen 1992) to the earlier dataset
of Beji & Battjes (1993) in a more restricted domain. These authors also illustrated
that improved dispersion is crucial to predict the wave evolution accurately by
including a comparison to simulations with Boussinesq equations with lowest-order
dispersion (Peregrine 1967), which compared considerably less favourably with the
observations than the dispersion-enhanced formulation by Madsen & Sørensen
(1992). Dingemans (1997, § 5.9) showed that even the predictions with the enhanced
Boussinesq formulation deteriorate for positions far behind the shoal (x = 33.64 m
and x = 41.04 m, no measurements were available at these positions in the set-up
used by Beji & Battjes), suggesting that taking full account of dispersion (as in the
present work) or a high-order approximation (e.g. Agnon, Madsen & Schäffer 1999;
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Figure 3. Comparison observed and predicted surface elevation time series for wave propaga-
tion over a shoal. Incident waves have period 2.86 s and amplitude 0.02 m. Circles denote
laboratory observations by Luth et al. (1994), solid line represents model predictions.

Madsen, Bingham & Schäffer 2003) is essential to resolve wave phases over larger
distances.

Although the depth variations over the shoal are fairly rapid, the observations at
locations between the generator and the trapezoid (not shown here) did not indicate
the presence of significant wave reflections; moreover, the level of agreement between
observations and predictions supports the assumptions of unidirectionality and slowly
varying depth as implicit in the model.

6.2. Nonlinear wave propagation over two-dimensional bathymetry

To validate the model representation of weakly two-dimensional topography, we
compare model predictions to observations reported by Whalin (1971) who performed
experiments on an alongshore convex-shaped beach shown in figure 4. The wave
generator was positioned in the deeper part of the wave tank at x = 1.615 m.
Monochromatic waves were generated; significant enhancement of harmonics was
observed in the focal region where the combined effects of refraction, diffraction and
nonlinear wave–wave interactions are important.

For this case the waves are in relatively shallow water so that the nonlinear evolution
is predominantly due to near-resonant quadratic interactions; cubic interactions are
assumed of lesser importance here. The observations are thus compared to simulations
performed with a numerical implementation of (6.1), omitting the terms accounting
for cubic wave–wave interactions, Ξ

(www)
1 , and the interaction with the mean flow,

Ξ
(wc)
1 .
We consider two cases, both with normally incident waves of 2 s period (ω0 =

π rad s−1, λ0 = 0) and initial amplitudes of 0.75 cm and 1.06 cm respectively (a snapshot
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wave gauge positions along the centreline. (b) Model-predicted surface elevation (equation
(6.1)) for incident wave with period 2.0 s and initial amplitude 1.06 cm.

of the model-predicted surface elevation over the topography for the larger-amplitude
case is shown in figure 4b). The model is initialized with a single spectral component
with the appropriate initial amplitude, frequency and alongshore wavenumber at
x = 0 and the corresponding (theoretical) first harmonic. The spatial domain is dis-
cretized with 
x and 
y both equal to 0.1 m. A fourth-order, fixed-step-size, Runge–
Kutta scheme is used to evaluate the evolution of the primary wave (ω0) and
its three harmonics (2ω0, 3ω0, 4ω0). Evanescent modes (|λ| >kω) are excluded from
the computations, including those modes that are evanescent at x = 0 but become
propagating inside the computational domain as a result of the variable depth. The
alongshore wavenumber interval 
λ = 2π/Ly where Ly denotes the lateral extent of
the computational domain.

Figure 5 shows the evolution of the spectral amplitudes of the primary component,
and the first and second harmonic, for the two cases considered (left and right panels
respectively). As the waves propagate from the deep end of the flume over the topo-
graphy into shallow water, the primary wave component initially increases, predo-
minantly due to shoaling and wave convergence, until quadratic interactions
approach resonance resulting in the observed rapid growth of the first and
second harmonic at the expense of the primary wave component, followed by
partial recurrence. Apart from a predicted spatial oscillation of the primary
component for the larger wave case in the down-wave region of the flume
(panel b), which is absent in the observations (a similar discrepancy was invariably
found by other authors, e.g. Liu, Yoon & Kirby 1985; Kaihatu & Kirby 1995;
Tang & Ouellet 1997), the model predictions are in good agreement with the
observations.

6.3. Numerical efficiency and outlook

The application of a multi-frequency angular spectrum decomposition results in a
dimensional reduction of the governing equation (a set of ODEs describes the evolu-
tion of stationary, two-dimensional wave fields over two-dimensional topography) at
the expense of convolution-type forcing terms for the wave–wave and wave–bottom
interaction, which is typical for spectral Galerkin-type methods.
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Figure 5. Evolution of amplitudes of primary wave component and harmonics for a periodic
incident wave with period 2.0 s propagating over two-dimensional bathymetry. Left panels:
initial amplitude 0.75 cm. Right panels: 1.06 cm. (a, b) ω0, (c, d) 2ω0, (e, f ) 3ω0. Circles denote
observed values by Whalin (1971), solid line represents model results. Note differences in
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Direct evaluation of the convolution-type forcing terms is straightforward, but for
the cubic interaction terms, for example, the number of operations is O(N3) (N
being the number of spectral components) which becomes prohibitive for larger-scale
applications. Such terms can be implemented by utilizing standard pseudospectral
methods (see e.g. Orszag 1972) so that the number of operations scales as O(N log2 N )
(see also e.g. Bredmose et al. 2002, 2004; Canuto et al. 1987); this renders the approach
suitable for application to wave fields with realistic spectra and spatial scales as
encountered in typical (nearshore) oceanographic applications. No such (or other)
efficiency improvements were pursued for the numerical evaluations presented here,
but we remark that on a standard desktop (P4) computer the computations for the
unidirectional cases with cubic nonlinearity take a few minutes, not hours; the two-
dimensional model for the Whalin experiment (cubic terms omitted and four har-
monics computed) requires less than a minute of CPU time.

For waves of moderate amplitude over mildly varying depth with weak lateral
variations, the multi-frequency angular spectrum approach presented here is efficient
and applicable to scales covering hundreds of wavelengths (e.g. wave propagation over
the continental shelf onto beaches); in particular, it has the potential to investigate
the effects and relative importance of competing nonlinear processes in random ocean
waves over shoals and banks. More general time-domain models such as boundary-
integral methods and field approximations of the Laplace equation (e.g Westhuis
2001) or even recent developments in extended Boussinesq theory (e.g Madsen et al.
2003) are potentially more accurate, in particular over steep topography or in the
presence of strong nonlinearity, but are computationally intensive which generally
restricts their application to smaller areas. Furthermore, such models do not explicitly
describe the wave interaction mechanisms, which, since Stokes (1847), are so deeply
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rooted in our conceptual understanding of nonlinear wave physics and at the basis
of widely used operational wave models (e.g. Hasselmann 1962).

For random ocean wave fields, understanding of the evolution of the wave field
statistics is often more useful than detailed, deterministic knowledge of individual
realizations. Such statistical information can be obtained either through, numerically
intensive, Monte Carlo simulations, or by recasting the governing equations to
compute ensemble-averaged wave field quantities directly, thus describing the wave
field evolution in a stochastic, rather than deterministic, sense (e.g. Herbers & Burton
1997; Agnon & Sheremet 1997); the multi-frequency angular spectrum approach is
particularly well-suited as a basis for the latter approach.

7. Conclusions
Utilizing an angular spectrum decomposition of the wave field, a discrete spectral

evolution model was derived for the propagation of nonlinear surface waves over
weakly two-dimensional topography. The model accounts for the linear effects of
refraction, shoaling, diffraction and non-stationarity as well as quadratic and cubic
nonlinear effects. It is a generalization and extension of previous work in the sense
that: (i) arbitrary resonance mismatch for quadratic interactions in a multi-frequency,
multi-directional wave field propagating over weakly two-dimensional topography
is included with exact correspondence to well-known deep–intermediate (Stokes)
and shallow-water (Boussinesq) limits; (ii) it accounts for cubic near resonances in
deep–intermediate water without suffering the breakdown in shallow water typically
associated with Stokes-type expansions.

The equivalence with well-known expressions for nonlinear wave propagation in
deep–intermediate water is shown. By taking proper limits, the model is shown to
include both narrow-band cubic Schrödinger-type equations and models for quadratic
resonant interactions as special cases, while reducing to a classical Boussinesq
formulation in shallow water.

Comparisons of numerical simulations to laboratory observations of one-
dimensional wave propagation demonstrate that the model accurately predicts
both cubic nonlinear effects on the evolution of wave groups in relatively deep water,
and harmonic generation in relatively long waves propagating over a submerged
obstacle. The successful modelling of such disparate nonlinear cases with a single
model illustrates the general validity of the present formulation.

Comparisons to laboratory observations of two-dimensional wave propagation over
a convex beach confirm the robustness of the weakly two-dimensional approximation
of topographical features in describing the combined effects of refraction, diffraction
and harmonic generation in a realistic focusing region on a beach.
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Appendix A. Wave–wave interaction coefficients
A.1. Quadratic coefficients

D1,2 = −1

2

[
ω1k

2
2

(
1 − ω2

2

gk2

T2

)
+ω2k

2
1

(
1 − ω2

1

gk1

T1

)
− 2 (ω1 + ω2) (k1k2T1T2 − k1 · k2)

]
,

R1,2 =
1

2g
[ω1ω2(k1T1 + k2T2) + g(k1k2T1T2 − k1 · k2)].

A.2. Cubic coefficients

D1,2,3 = 1
3
[D̂1,2,3 + D̂2,1,3 + D̂3,1,2]

where

D̂1,2,3 =
ω1

g
(ω2 + ω3) (k2 · k3 (k2T2 + k3T3) − k3k2 (k3T2 + k2T3))

+ k1 · (k2 + k3)
(
k2k3T2T3 − 1

2
k2 · k3

)
− k2

1k2k3T2T3 + k2
1

(
1 − T 2

1

)
R2,3.

Note that the D̂1,2,3 are symmetrical in the last two indices so that D1,2,3 is symmetrical
in all three indices.

Appendix B. Forcing terms
The forcing terms on the transport equation (5.1) in physical variables and

coordinates are

ξ
(wb)
1 = i

g

2ω1

(
1 − T 2

1

)[
k2

1G1{h̃, ϕ2} + iλ1(q1T1 − 1)G1{h̃y, ϕ2}

+ i�1

(
Cg,1

2C1

+ q1T1 − 1

)[
G1{h̃x, ϕ2} + 2G1{h̃, ϕ2,x}

]]
, (B 1)

ξ
(wbb)
1 = i

g

2ω1

(
1 − T 2

1

)k3
1

(
1 + 3T 2

1

)
4T1

G1{h̃2, ϕ2}, (B 2)

ξ
(www)
1 =

i

2ω1

∑
v2,v3,v4

H2,3,4ϕ2ϕ3ϕ4δ
λ,ω
234;1E234;1, (B 3)

ξ
(wc)
1 = i

k2
1

2ω1

(
1 − T 2

1

)
G1{φt , ϕ2} − G1{φx, i�2ϕ2} − G1{φy, iλ2ϕ2}, (B 4)

where

H1,2,3 = 1
3
[Ĥ1,2,3 + Ĥ2,1,3 + Ĥ3,1,2], Ĥ1,2,3 = D̂1,2,3 − 2

D2,3

gk23T23
23

D1,23. (B 5)

The quadratic and modified cubic nonlinear term in (5.3) are

ξ
(ww)
1 = −V1

∑
v2,v3

D2,3

gJ2,3

ϕ2ϕ3δ
λ,ω
23;1E23;1, (B 6)

ξ
(M,www)
1 =

i

2ω1

∑
v2,v3,v4

W2,3,4ϕ2ϕ3ϕ4δ
λ,ω
234;1E234;1, (B 7)
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where in (B 7)

W1,2,3 = 1
3
[Ŵ1,2,3 + Ŵ2,1,3 + Ŵ3,1,2] (B 8)

and

Ŵ1,2,3 = D̂1,2,3 − 2
D2,3

gk23T23
23

(
D1,23 − 2ω1+2+3V1+2+3

D1,2+3

gJ1,2+3

)
. (B 9)

The forcing terms on the transport equation for a stationary wave field, (6.1), are

Ξ
(wb)
1 = i

g

2ω1V1

(
1 − T 2

1

)[
k2

1G1{h̃, ϕ2} + i�1P1G1{h̃x, ϕ2}

+ iλ1(q1T1 − 1)G1{h̃y, ϕ2}
]
, (B 10)

Ξ
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1 = i
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2ω1V1
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1
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1
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− P1

]
G1{h̃2, ϕ2}, (B 11)

Ξ
(wc)
1 = − 1

V1

(
G1{φx, i�2ϕ2} + G1{φy, iλ2ϕ2}

)
, (B 12)

where

P1 =
1

2

[(
k1

�1

)2

− 1

]
− C1

2Cg,1

(1 − q1T1).

Appendix C. Wave-driven mean flow and set-down
Governing equations for the wave-driven mean flow are given to facilitate

comparison to experimental (flume) data. Results are presented directly in physical
variables and coordinates and we use the actual, two-dimensional depth, h, instead
of the decomposition applied to derive the wave field evolution. The current-related
quantities are assumed to depend on the slow scales in x, y and t:[

Φ (n,0)

η(n,0)

]
=

[
Φ (n,0)(z, x1, y1, t1, x2, y2, t2)

η(n,0)(x1, y1, t1, x2, y2, t2)

]
. (C 1)

To the order of approximation required we obtain from the kinematic and dynamic
free-surface boundary condition:

ηt + ∇ · (h∇Φ + L) = 0, η = −1

g
Φt + B, (C 2)

where Φ = εΦ (1,0) and η = εη(1,0)+ε2/µ η(2,0). The wave-induced, depth-averaged mass
flux L and the wave-induced water level correction B are given by

L =
∑
p1

ω1

g
F−1{ϕ1e

iψ1}〈F−1{�1ϕ1e
iψ1}∗, F−1{λ1ϕ1e

iψ1}∗〉, (C 3)

B =
∑
p1

1

2g
[(k1T1)

2‖F−1{ϕ1e
iψ1}‖2 − ‖F−1{i�1ϕ1e

iψ1}‖2 − ‖F−1{iλ1ϕ1e
iψ1}‖2], (C 4)

where ϕ1 = εϕ
(1,1)
1 + (ε/µ)2ϕ(2,2)

1 . For a stationary wave field the depth-averaged, wave-
driven mean flow and water level corrections are given by

∇ · (h∇Φ + L) = 0, η = B. (C 5)
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